REACTIONS OF COORDINATED TRIMETHYLPHOSPHITE WITH BINARY FLUORIDES

J.H. Cameron, A.J. McLennan, D.S. Rycroft, and J.M. Winfield Chemistry Department, University of Glasgow, Glasgow G12 8QQ Scotland

Fluorination of free trimethylphosphite by phosphorus pentafluoride or tungsten hexafluoride involves complex formation followed by rapid F-for-OCH₃ exchange and Michaelis-Arbusov rearrangement reactions (D.W.A. Sharp et al., <u>J. Chem. Soc. A</u>, 1969, 872; J.M. Winfield et al., <u>ibid</u>, 1970, 501). Reactions between WF₆ or PF₅ and P(OCH₃)₃, coordinated to Fe^{II} (low spin d⁶-inert) or Cu^I (d¹⁰ -labile) cations in CH₃CN, counter anions PF₆ or AsF₆, are very different as evidenced by an n.m.r. study.

Reactions between Fe^{II}-P(OCH₃)₃ and WF₆ are very slow at room temperature; the major products are CH₃PF₄ and WOF₄.NCCH₃. Reactions between Cu^I-P(OCH₃)₃ and WF₆ or PF₅ are rapid, even below room temperature, and depend on the stoicheiometry. The major products are $W_2O_2F_9^-$ and a PF₅X⁻ species, or OPF₃, minor products include CH₃OPF₂, (CH₃O)₂PF, and PF₃. When the mole ratio coordinated P(OCH₃)₃:WF₆ is 1:1, additional $W_2O_2F_9$ and PF₅X n.m.r. signals are observed.

The reactions involve fluorination of free $P(OCH_3)_3$ whose concentration in solution is limited by the metal cation, and in the reaction between PF₅ and Cu^I-P(OCH₃)₃ PF₅.P(OCH₃)₃ has been identified as the initial product. Conventional Michaelis-Arbusov rearrangements are of minor importance as CH₃CN acts as a sink for CH₃⁺, but the final step in the formation of CH₃PF₄ is of this type.